首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18635篇
  免费   1177篇
  国内免费   413篇
电工技术   171篇
综合类   388篇
化学工业   7266篇
金属工艺   851篇
机械仪表   386篇
建筑科学   538篇
矿业工程   86篇
能源动力   2772篇
轻工业   342篇
水利工程   23篇
石油天然气   349篇
武器工业   30篇
无线电   985篇
一般工业技术   5180篇
冶金工业   317篇
原子能技术   161篇
自动化技术   380篇
  2024年   22篇
  2023年   312篇
  2022年   403篇
  2021年   591篇
  2020年   573篇
  2019年   543篇
  2018年   583篇
  2017年   659篇
  2016年   621篇
  2015年   724篇
  2014年   1038篇
  2013年   1172篇
  2012年   954篇
  2011年   1765篇
  2010年   1330篇
  2009年   1310篇
  2008年   1214篇
  2007年   1078篇
  2006年   1191篇
  2005年   922篇
  2004年   720篇
  2003年   623篇
  2002年   472篇
  2001年   214篇
  2000年   183篇
  1999年   213篇
  1998年   170篇
  1997年   136篇
  1996年   105篇
  1995年   111篇
  1994年   64篇
  1993年   36篇
  1992年   28篇
  1991年   36篇
  1990年   28篇
  1989年   9篇
  1988年   11篇
  1987年   11篇
  1986年   15篇
  1985年   14篇
  1984年   11篇
  1983年   4篇
  1982年   1篇
  1979年   1篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
31.
Mechanical testing of carbon containing refractories at high temperatures requires measures to protect the sample from oxidation. Therefore, special setups for tensile and compressive creep testing were developed to prevent the oxidation of carbon in the sample. A MgO-C refractory was selected for a case study. These developments allow the quantification of the tensile and compressive creep behaviour of MgO-C refractories at temperatures up to 1500?°C. The creep parameters are determined by an inverse evaluation method for the obtained experimental data. They enable the consideration of creep in a thermomechanical finite element simulation of refractory linings in service.  相似文献   
32.
In this paper the microstructure and mechanical properties of two different Cf/ZrB2-SiC composites reinforced with continuous PyC coated PAN-derived fibres or uncoated pitch-derived fibres were compared.Pitch-derived carbon fibres showed a lower degree of reaction with the matrix phase during sintering compared to PyC/PAN-derived fibres. The reason lies in the different microstructure of the carbon. The presence of a coating for PAN-derived fibres was found to be essential to limit the reaction at the fibre/matrix interface during SPS. However, coated bundles were more difficult to infiltrate, resulting in a less homogeneous microstructure.As far as the mechanical properties are concerned, specimens reinforced with coated PAN-derived fibres provided higher strengths and damage tolerance than uncoated pitch-derived fibres, due to the higher degree of fibre pull-out. On the other hand, the weaker fibre/matrix interface resulted in lower interlaminar shear, off-axis strength and ablation resistance.  相似文献   
33.
An on-site laboratory with direct access to cleaned and conditioned steel mill gases was recently put into operation. The long-term performance and stability of Clariant's MegaMax®800 methanol synthesis catalyst utilizing steel mill gases is currently being investigated. First test results revealed that in order to investigate deactivation mechanisms arising from particular properties of the cleaned steel mill gases, the overlaying effect of thermal deactivation of the catalyst has to be minimized.  相似文献   
34.
针对芳香硝基化合物的催化选择性加氢反应,开发可替代贵金属催化剂的低成本、高效非贵金属催化剂,对于芳香胺类化合物的绿色生产具有重要意义。利用简易、可规模化的制备方法,以镍—2,5-吡啶二羧酸金属有机框架为前驱体,热解制备了氮掺杂石墨碳包覆镍纳米催化材料(Ni@CN)。采用X射线衍射、扫描电镜、透射电镜、元素分析、N2吸脱附等检测手段对Ni@CN的物化性质进行了表征,并对其催化性能进行了评价。结果表明,Ni@CN可在温和条件下(85℃,1.0 MPa H2)高效加氢含取代官能团的芳香硝基化合物生成对应的芳香胺类化合物。对比试验表明,镍纳米颗粒是Ni@CN的加氢活性中心,而石墨碳壳的存在有利于优先吸附硝基官能团。此外,进一步考察了Ni@CN的循环使用性能以及抗硫化物中毒的特性。  相似文献   
35.
《Ceramics International》2021,47(22):31713-31723
Continuous carbon-fibre-reinforced Cs-geopolymer composite (Cf/CsGP) were prepared, and its in-situ conversion was investigated during high-temperature treatments. The effect of treatment temperature on the thermal evolution process and mechanical properties of the resulting products were systematically evaluated. The results indicated that the crystallization temperature of Cf/CsGP composite was considerably delayed because the amorphous structure of carbon fibres was not conducive as a nucleation substrate for pollucite derived from the CsGP matrix. Moreover, the integrity of the corresponding resulting products derived from the Cf/CsGP composite were damaged due to thermal shrinkage that occurred during the high-temperature treatment process. When treatment temperature was ≤1200oC, the mechanical properties of the corresponding products exhibited an upward trend, which was ascribed to the improvement of the densification degree of the resulting composite and well interface-bonding state between carbon fibres and pollucite. However, the mechanical properties of the resulting composites decreased with the treatment temperature continued increased from 1200 to 1400oC. This phenomenon was attributed to the impairment of fibre properties caused by interfacial reactions.  相似文献   
36.
The design of an interfacial structure is particularly important for load transfer in composites. In this paper, different amounts of carbon nanotubes (CNTs) were grafted onto the carbon fiber (CF) surface by adjusting grown temperature using injection chemical vapor deposition (ICVD). The prepared CF preform grafted with CNTs (CNTs-CF) were used to reinforce magnesium alloy by squeeze casting process. The microstructures were analyzed by means of optical microscope (OM) and scanning electron microscope (SEM), and the interlaminar shear strength (ILSS) and tensile strength of the composites were determined by double-notch shear test and tensile test. The results indicated that moderate ILSS was more conducive to improving the tensile properties of carbon fiber reinforced magnesium matrix (Cf/Mg) composites. Compared with Cf/Mg, the tensile strength of composite with CNTs increased by about 80%. For Cf/Mg composites grafted with CNTs, CNTs had the effects of delaying crack propagation and increasing energy consumption by the pull-out and bridging mechanism, which were the main reasons for improving the strength. The analysis of shear fracture surface showed that the crack propagation path can be optimized by adjusting the amounts of grafted CNTs. The presence of CNTs affects the stress distribution and consequently the crack initiation as well as the crack propagation.  相似文献   
37.
The through-thickness conductivity of carbon fiber reinforced polymer (CFRP) composite was increased by incorporating multiwalled carbon nanotubes in the interlaminar region. Carbon nanotubes (CNTs) were dispersed in a polyethylenimine (PEI) binder, which was then coated onto the carbon fiber fabric. Standard vacuum-assisted resin infusion process was applied to fabricate the composite laminates. This modification technique aims to enhance the electrical conductivity in through-thickness direction for the purpose of nondestructive testing, damage detection, and electromagnetic interference shielding. CNT concentrations ranging from 0 to 0.75 wt% were used and compared to pristine CFRP samples (reference). The through-thickness conductivity of the CFRP exhibited an improvement of up to 781% by adopting this technique. However, the dispersion of CNT in PEI led to a viscosity increase and poor wetting properties which resulted in the formation of voids/defects, poor adhesion (as shown in scanning electron micrographs) and the deterioration of the mechanical properties as manifested by interlaminar shear strength and dynamic mechanical analysis measurements.  相似文献   
38.
The increased use of carbon fiber reinforced thermosets generates more waste and end-of-life products. However, an efficient recycling method for the expensive carbon fibers has not yet been developed. The selective decomposition of amine-cured epoxy resin under mild conditions is presented. A two-step method was investigated to decompose the epoxy resin. The optimum parameters were initially determined using a model compound. By analysis of the reaction products, a cleavage of the C–N bond according to the Cope elimination could be proven. Therefore, the Cope elimination is suggested as the main step of the decomposition of amine-cured epoxy resins in presence of hydrogen peroxide. By dissolving the resin, it is possible to recover resin-free fibers with unimpaired mechanical properties.  相似文献   
39.
Biohythane is typically composed of 60/30/10 vol% CH4/CO2/H2 and can be produced via two-stage anaerobic digestion of renewable and low carbon biomass with much greater efficiency compared with CH4/CO2 biogas. This work investigates the effects of fuel variability on the electrical performance and fuel processing of a commercially available anode supported solid oxide fuel cell (SOFC) operating on biohythane mixtures at 750 °C. Cell electrical performance was characterised using current-voltage curves and electrochemical impedance spectroscopy. Fuel processing was characterised using quadrupole mass spectroscopy. It is shown that when H2/CO2 is blended with CH4 to make biohythane, the SOFC efficiency is significantly increased, high SOFC durability is achieved, and there are considerable savings in CH4 consumption. Enhanced electrical performance was due to the additional presence of H2 and promotion of CH4 dry reforming, the reverse Boudouard and reverse water-gas shift reactions. These processes alleviated carbon deposition and promoted electrochemical oxidation of H2 as the primary power production pathway. Substituting 50 vol% CH4 with 25/75 vol% H2/CO2 was shown to increase cell power output by 81.6% at 0.8 V compared with pure CH4. This corresponded to a 3.4-fold increase in the overall energy conversion efficiency and a 72% decrease in CH4 consumption. A 260 h durability test demonstrated very high cell durability when operating on a typical 60/30/10 vol% CH4/CO2/H2 biohythane mixture under high fuel utilisation due to inhibition of carbon deposition. Overall, this work suggests that decarbonising gas grids by substituting natural gas with renewably produced H2/CO2 mixtures (rather than pure H2 derived from fossil fuels), and utilising in SOFC technology, gives considerable gains in energy conversion efficiency and carbon emissions savings.  相似文献   
40.
Ammonia generation was studied in the reaction between water and nitrogen-containing iron at 323 K and atmospheric pressure. Similar to metallic Fe, the interstitial compound Fe3N reduced water through Fe oxidation to produce hydrogen gas, while the N combined with atomic hydrogen to produce ammonia as a byproduct. The addition of carbon dioxide to this system accelerated the reaction with concomitant consumption of carbon dioxide. The promoted ammonia production upon addition of carbon dioxide can be attributed to the generation of atomic hydrogen from the redox reaction of carbonic acid and Fe, as well as removal of used Fe from the reaction system through the formation of a soluble carbonato complex. When carbonate was added to the reaction system, the production rates of ammonia and hydrogen increased further. The results here confirmed that ammonia can be synthesized from iron nitride under mild conditions by utilizing carbon dioxide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号